aRrayLasso: a network-based approach to microarray interconversion

نویسندگان

  • Adam S. Brown
  • Chirag J. Patel
چکیده

UNLABELLED Robust conversion between microarray platforms is needed to leverage the wide variety of microarray expression studies that have been conducted to date. Currently available conversion methods rely on manufacturer annotations, which are often incomplete, or on direct alignment of probes from different platforms, which often fail to yield acceptable genewise correlation. Here, we describe aRrayLasso, which uses the Lasso-penalized generalized linear model to model the relationships between individual probes in different probe sets. We have implemented aRrayLasso in a set of five open-source R functions that allow the user to acquire data from public sources such as Gene Expression Omnibus, train a set of Lasso models on that data and directly map one microarray platform to another. aRrayLasso significantly predicts expression levels with similar fidelity to technical replicates of the same RNA pool, demonstrating its utility in the integration of datasets from different platforms. AVAILABILITY AND IMPLEMENTATION All functions are available, along with descriptions, at https://github.com/adam-sam-brown/aRrayLasso. CONTACT [email protected]. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression aRrayLasso: a network-based approach to microarray interconversion

Summary: Robust conversion between microarray platforms is needed to leverage the wide variety of microarray expression studies that have been conducted to date. Currently available conversion methods rely on manufacturer annotations, which are often incomplete, or on direct alignment of probes from different platforms, which often fail to yield acceptable genewise correlation. Here, we describ...

متن کامل

Integration and Reduction of Microarray Gene Expressions Using an Information Theory Approach

The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Using the Protein-protein Interaction Network to Identifying the Biomarkers in Evolution of the Oocyte

Background Oocyte maturity includes nuclear and cytoplasmic maturity, both of which are important for embryo fertilization. The development of oocyte is not limited to the period of follicular growth, and starts from the embryonic period and continues throughout life. In this study, for the purpose of evaluating the effect of the FSH hormone on the expression of genes, GEO access codes for this...

متن کامل

A Chance Constraint Approach to Multi Response Optimization Based on a Network Data Envelopment Analysis

In this paper, a novel approach for multi response optimization is presented. In the proposed approach, response variables in treatments combination occur with a certain probability. Moreover, we assume that each treatment has a network style. Because of the probabilistic nature of treatment combination, the proposed approach can compute the efficiency of each treatment under the desirable reli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015